
INTRODUCTION
Ginger (Zingiber officinale) is a flowering plant that is part 
of the Zingiberaceae family. Its rhizome, often called ginger 
root, is extensively used as a spice and for its medicinal 
benefits. Native to Southeast Asia, ginger has been cultivated 
for thousands of years and is now grown in tropical and 
subtropical areas around the globe. Ginger is thought to have 
originated in the Indo-Malaya region of Southeast Asia and 
India before being introduced and cultivated in other tropical 
countries (Kizhakkayil and Sasikumar 2011). For example, 
India, Nigeria, Australia, China, and Jamaica are among the 
main ginger-exporting countries (Kubra 2012).

Plants from the Zingiberaceae family are found extensively 
across tropical and subtropical regions around the world. This 
family includes approximately 1,300 species across 50 genera 
(Kubra 2012). According to Syafitri et al. (2018), ginger can 
be classified into three main varieties: giant or white ginger 
(Zingiber officinale var. Roscoe), small white ginger or ginger 
emprit (Zingiber officinale var. Amarum), and red ginger 
(Zingiber officinale var. Rubrum). The plant can reach a height 

of about one meter and has a woody stem covered by a leaf 
sheath. Its rhizome is yellowish in color and has branches 
beneath the soil surface (Mansfield et al. 2012).

 Ginger’s medicinal properties are derived from its volatile 
and non-volatile compounds, with oleoresins constituting a 
significant part of the non-volatile fraction (Anasori 2008; 
Mia et al. 2015). This plant is rich in bioactive compounds, 
including phenolics, terpenes, and flavonoids, with [6]-gingerol 
and [6]-shogaol being the primary components responsible 
for its distinctive spicy f lavor and notable physiological 
properties (Wohlmuth et al. 2005). These bioactive compounds, 
particularly polyphenols, contribute to ginger’s widespread use 
as a natural remedy for various conditions, including diabetes, 
cancer, and inflammation (Li et al. 2012; Anh et al. 2020). By 
neutralizing free radicals generated by hyperglycemia, these 
antioxidants not only mitigate oxidative stress but also exhibit 
additional biological effects, such as reducing inflammation, 
modulating enzyme activity, and regulating gene expression 
(McKay et al. 2015). Gingerols, which are responsible for its 
spiciness, are heat-sensitive and convert to shogaols at high 
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temperatures. Shogaol, the primary compound in dried ginger, 
is spicier and more potent than gingerol (Andriyani et al. 2015).

Various methods are used to successfully cultivate 
ginger, and they are continually refined based on scientific 
principles. The choice of method depends on soil quality, 
climatic conditions, and resource availability. In the traditional 
method, ginger is cultivated in tropical and subtropical climates 
with soil that is rich in organic matter. Research highlights 
that high-quality rhizomes require soil with good moisture 
retention and drainage properties (Smith 2020). The optimal 
temperature for ginger growth in greenhouses ranges between 
22°C and 28°C (Jones et al. 2018). Hydroponics is a modern and 
efficient method in which ginger is grown without soil, using 
a nutrient solution. This technology accelerates plant growth 
and enables the efficient use of resources. Studies show that 
using microbial fertilizers in hydroponic systems enhances 
the chemical composition and biological activity of ginger 
rhizomes (Kumar et al. 2022). 

Ginger cultivation faces significant challenges from soil-
borne diseases, such as bacterial wilt, soft rot, and yellow 
diseases, which lead to severe economic losses (Mansfield et 
al. 2012). Farmers often use soil fumigants—broad-spectrum 
compounds such as fungicides and nematicides—to eliminate 
pathogens, reduce disease incidence, and improve crop 
profitability (Rokunuzzaman et al. 2016). The widespread 
use of chemical fertilizers in modern agriculture has 
significantly contributed to declining soil health, disrupted 
ecosystem balance, and reduced crop resilience (Chen et al. 
2022). Prolonged reliance on these inputs often depletes soil 
organic matter, alters microbial communities, and increases 
environmental pollution through nutrient runoff (Sanwal 
et al. 2007). As an alternative, microbial fertilizers have 
gained attention for their ability to enhance soil fertility and 
promote sustainable agricultural practices (Cho et al. 2015; 
Egamberdieva et al. 2017 a,b,c; Mardonova et al. 2024). These 
biofertilizers improve nutrient cycling, increase plant growth, 
and restore soil biodiversity, making them a promising solution 
for sustainable ginger cultivation (Bhattacharyya et al. 2016). 
Integrating microbial fertilizers into farming systems can help 
mitigate the adverse effects of chemical inputs while supporting 
long-term agricultural sustainability. Additionally, hydroponic 
cultivation of crops like ginger offers further sustainability 
by optimizing nutrient delivery, minimizing soil issues, and 
improving yields, thus complementing the use of biofertilizers 
in long-term agricultural practices (Smith et al. 2017; Lee et 
al. 2018; Kumar et al. 2020).

In this review, we delve into the scientific advancements in 
ginger cultivation, focusing on sustainable farming methods, 
biofertilizer applications, and the role of hydroponics in 
addressing the challenges faced by modern agriculture. By 
examining these approaches, we aim to provide insights into 
achieving high-quality ginger production while promoting 
long-term agricultural sustainability.
Cultivation of Ginger
Ginger cultivation faces numerous challenges affecting yield, 
quality, and sustainability. Traditional cultivation practices 

include planting rhizome sections with healthy buds, applying 
mulch, and using chemical fertilizers to manage soil moisture 
and nutrient uptake for optimal growth (Soeparjono 2016). 
Despite these practices, issues such as soil fertility limitations, 
organic matter deficiency, and disease susceptibility often 
result in subpar yields and inconsistent quality (Mansfield et 
al. 2012). Traditional farming methods often rely on planting 
rhizomes in well-drained soil, along with the application 
of chemical and organic inputs to maintain soil fertility 
and support growth. Sanwal et al. (2007) underscore the 
importance of organic amendments in enhancing soil health. 
The transplanting method involves pre-sprouting rhizomes 
in nursery trays filled with coir and vermicompost, resulting 
in a reduction of seed usage by approximately 60% and 
improved plant establishment (Rao and Singh 2019). The 
method aids in disease management by providing a controlled 
environment before field transplantation (Bhattacharyya et al. 
2016). Hydroponics, a soilless cultivation method that uses 
nutrient solutions or inert substrates, presents an advanced 
approach for ginger farming. This technique allows for 
precise control over nutrients and water, reducing water 
usage by up to 70–80% compared to conventional methods 
(Alshrouf 2017; Kannan et al. 2022). According to Wang et al. 
(2022), microbial interactions within hydroponic systems can 
enhance plant health, with beneficial microbes such as Bacillus 
velezensis supporting higher yields and improved disease 
resistance. Integrating ginger cultivation with tree planting and 
intercropping helps maintain soil moisture, enhance nutrient 
cycling, and promote biodiversity. Research by Meena et al. 
(2021) indicates that agroforestry systems reduce soil erosion 
and support long-term land productivity. This practice, coupled 
with microbial inoculation, has shown potential in boosting 
soil health and ginger productivity (Bhattacharyya et al. 2016).

Several reports demonstrated that charcoal husk, bokashi, 
coco peat, and organic fertilizers significantly influenced the 
development and yield of red ginger rhizomes (Soeparjono 
2016). Together, these findings underscore the critical role 
of biofertilizers and organic amendments in enhancing the 
growth, yield, and sustainability of ginger production. A field 
experiment in Meghalaya (2003–2005) found that poultry 
manure produced the highest root yield compared to inorganic 
fertilizers (Sanwal et al. 2007). Similarly, compost teas and 
organic manure improved crop quality while reducing costs, 
enhancing soil organic matter, and lowering acidity. In sub-
Saharan Africa, a two-year study found that Chromolaena 
odorata mulches outperformed organic fertilizers, significantly 
increasing ginger leaf count and yield on Alfisol soils 
(Akinwumia et al. 2022). 
Plant Associated Bacteria
Plant-associated bacteria are a diverse group of microorganisms 
that reside in different plant environments, such as the 
rhizosphere (root surface), phyllosphere (leaf surface), and 
endosphere (internal tissues) (Egamberdieva et al. 2008, 
2015; Parray et al. 2016; Kumar et al. 2020). These bacteria 
can impact plant health and productivity in both positive 
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and negative ways (Egamberdieva et al. 2022). The plant 
microbiome plays a crucial role in enhancing plant health and 
productivity, influencing disease resistance, nutrient cycling, 
and overall plant growth (Kwon et al. 2021). Recent research 
has emphasized that understanding the microbial communities 
in ginger soils can enhance management practices. Wang et al. 
(2022) discovered that the microbial composition of healthy 
ginger plants is notably different from that of diseased plants, 
indicating that improving soil biodiversity could support disease 
resistance and boost productivity. A recent study suggested that 
Flavobacterium and Chitinophaga in endophytic bacterial 
communities might possess the ability to inhibit soil-borne 
pathogens (Du Toit 2020). Carrión et al. (2019) observed that 
the relative abundance of Flavobacterium increased alongside 
Ralstonia, implying that Flavobacterium might help suppress 
Ralstonia in the ginger root zone. Moreover, certain species of 
Stenotrophomonas and Sphingobacterium have been shown 
to suppress the growth and virulence of plant pathogens, as 
well as assist plants in recovering from stress. In this study, 
both genera exhibited a greater relative abundance in diseased 
soil than in healthy soil (Kwak et al. 2018). Research on the 
ginger soil microbiome has revealed variations between 
healthy and unhealthy samples. In healthy soil, the dominant 
bacterial genera include Rhodanobacter and Kaistobacter, 
while Rhodoplanes and Bradyrhizobium are more prevalent in 
unhealthy soil. The genus Cryptococcus is recognized for its 
potential plant growth-promoting characteristics, which could 
positively impact soil health and ginger growth (Liu et al. 2017). 

Ginger is vulnerable to diseases such as blight, caused by 
Pythium myriotylum, and bacterial wilt, caused by Ralstonia 
solanacearum. These pathogens thrive in warm, moist 
environments and can severely impact yields. For example, 
P. myriotylum led to a 20% reduction in annual ginger yield 
in Taiwan (Wang et al. 2003). Research on the bacterial 
communities of ginger rhizomes has revealed that diseased 
soils have a higher prevalence of Ralstonia, while beneficial 
bacteria such as Bacillus, Sphingomonas, and Actinoplanes 
are more abundant in healthy soils. This shift in bacterial 
populations suggests a link between microbial diversity 
and disease severity (Wang et al. 2022). Understanding the 
endophytic microbial communities within ginger rhizomes 
is crucial for evaluating their roles in disease management 
and plant health (Huang et al. 2021). This study highlights 
the complex relationship between microbial diversity and the 
health of ginger crops, emphasizing the potential of beneficial 
microbes to enhance disease resistance and productivity, 
while also identifying key gaps for future research on soil 
microbiome dynamics. Studies have shown that B. velezensis 
can modify the soil’s bacterial composition and enhance 
ginger production in a dose-dependent manner (Chowdhury 
et al. 2013).  

Several microbial species have been observed in the root 
and shoot of ginger. For example, Singh et al. (2021) identified 
Pseudomonas putida and Azospirillum brasilense in the 
rhizome of ginger. In other study Tan et al. (2020) isolated 

Piriformospora indica, Trichoderma harzianum from the root 
of plant. Methylobacterium extorquens, Bacillus subtilis were 
isolated from leaves (Kumar et al. 2020) and Enterobacter 
cloacae, Burkholderia cepacia frokm stem of plant (Hasan et 
al. 2022). Randrianjohany et al. (2023) reported Streptomyces 
sp., Actinobacteria sp. from flowers of ginger, whereas Lewis 
et al. (2024) observed Bacillus amyloliquefaciens in the 
rhizosphere of plant.
Plant Beneficial Properties
Biofertilizers, derived from plants, animals, and minerals, 
are essential for sustainable agriculture, as they provide vital 
nutrients, enhance soil health, and ensure long-term fertility 
(Hashem et al. 2019; Javid et al. 2023). The application of 
beneficial microbes like Bacillus velezensis has been shown to 
improve soil health and contribute to higher yields (Wang et al. 
2022). Microbial inoculants like Azospirillum brasilense and 
Bacillus subtilis aid nutrient cycling by solubilizing phosphorus 
and potassium and fixing nitrogen in the soil (Kaari et al. 2023). 
Nitrogen-fixing bacteria like Rhizobium and Azotobacter, 
along with free-living bacteria such as Arthrobacter and 
Pseudomonas, improve soil nitrogen levels and promote plant 
growth (Santi et al. 2013; Shurigin et al. 2024). These bacteria 
transform atmospheric nitrogen into a form that plants can 
absorb, supporting plant nutrition. Potassium-solubilizing 
bacteria, such as Bacillus and Aspergillus, improve potassium 
availability, which is crucial for plant growth and yield (Devi 
et al. 2023). The combined use of organic fertilizers, such as 
yard manure and vermicompost, along with microbes like 
Azospirillum and phosphate-solubilizing bacteria, has proven 
to be highly effective. Additionally, using green leaf manure 
supplemented with rock phosphate and wood ash also enhances 
both the dry yield and quality of ginger (Datta et al. 2018). 
Furthermore, microbial inoculants are crucial in modifying the 
soil’s microbial composition and function, boosting nutrient 
absorption and increasing plant resistance to various stresses. 

It is also demonstrated that hydroponic systems, 
when integrated with beneficial microbial agents offer an 
environmentally friendly alternative by minimizing soil-borne 
disease risks and enabling year-round production (Kwon et al. 
2021). By integrating microbial agents, farmers can enhance 
sustainability, productivity, and quality of ginger. Table 1, 
demonstrates plant beneficial properties of bacterial inoculants. 
Plant Beneficial Traits
Beneficial bacteria for plants promote growth through 
various mechanisms, such as producing phytohormones, 
fixing nitrogen, enhancing iron availability, solubilizing 
phosphate, producing siderophores, and generating ammonia 
(Egamberdieva et al. 2023). Nitrogen f ixation is the 
process in which nitrogen-fixing microorganisms transform 
atmospheric nitrogen into a form that plants can use, with 
the help of an enzyme system known as nitrogenase (Leroux 
et al. 2024). Biological nitrogen fixation encompasses both 
symbiotic nitrogen fixation and free-living nitrogen-fixing 
systems. Symbiotic nitrogen fixers consist of genera such 
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as Achromobacter, Rhizobium, Azoarcus, Sinorhizobium, 
Frankia, Allorhizobium, Bradyrhizobium, Azorhizobium, 
Burkholderia, Herbaspirillum, and Mesorhizobium (Turan 
et al. 2016). Notable non-symbiotic nitrogen-fixing bacteria 
include Herbaspirillum, Azoarcus, Azotobacter, and 
Gluconacetobacter  (Menendez and Garcia-Fraile 2017). 
Certain PGPR, such as ammonia nitrifiers like Bacillus sp. 
and Pseudomonas sp., convert organic nitrogen residues in 
soil organic matter into amino acids, which are subsequently 
broken down to produce ammonia through a process known 
as ammonification (Geisseler et al. 2010; Abdullaeva et 
al. 2024). Phosphorus (P) is a crucial element for plant 
growth and development, ranking just behind nitrogen in 
importance (Azziz et al. 2012). Phosphorus is present in 
soil in both organic and inorganic forms, but these are not 
easily accessible to plants. However, various PGPR such 
as Pseudomonas spp., Agrobacterium spp., Bacillus spp., 
Azotobacter spp., Enterobacter spp., Rhizobium spp., Serratia 
spp., and Thiobacillus spp. have been found to enhance the 
availability of poorly accessible phosphorus by solubilizing 
and mineralizing it (Alori and Fawole 2017). Certain bacterial 
strains of Paenibacillus jamilae can produce hydrolytic 
enzymes and antifungal metabolites, showing strong activity 
against soilborne pathogens (Wang et al. 2019). 

Bacterial wilt, caused by Ralstonia solanacearum, greatly 
affects ginger production. However, biocontrol bacterial 
isolates like Bacillus velezensis have been proven to effectively 
minimize infection, enhance plant growth, and boost yield (Cui 
et al. 2024). This bacterium produces bioactive substances, 
including surfactin, iturin, and fengycin—antifungal 
lipopeptides—along with compounds like difficidin and 
bacilycin, which help combat bacterial pathogens such as 
Xanthomonas oryzae (Wu et al. 2015). Its capacity to form 
biofilms promotes plant growth and aids in the release of 
antimicrobial substances that defend against harmful microbes 
(Rabbee et al. 2019). 

Indirect mechanisms involve the production of antibiotics, 
activation of systemic resistance (ISR), synthesis of hydrogen 
cyanide (HCN), competition for resources, and the creation 
of lytic enzymes like chitinases, proteases, cellulases, lipases, 

and 1,3-glucanases. These enzymes are capable of degrading 
portions of the cell walls of various pathogenic fungi (Kundan 
et al. 2015). The main method used by PGPR to counteract 
the harmful effects of plant pathogens is the production of 
one or more antibiotics (Raaijmakers and Mazzola 2012). 
Antibiotics are small molecular compounds produced by 
PGPR that harm other microorganisms by inhibiting essential 
enzymes and metabolic processes, which slows down their 
growth (Kundan et al. 2015). Certain plant pathogens can 
become resistant to specific antibiotics; thus, PGPR’s ability 
to produce multiple antibiotics increases their effectiveness 
as antagonistic agents against these pathogens (Glick et al. 
2007). Antibiotics produced by antagonistic microbes have 
both inhibitory and lethal effects on soil-borne plant pathogens 
(Bhattacharyya et al. 2016). Bacillus spp. and Pseudomonas 
spp. are recognized for producing a range of antibiotics, such 
as tas A, subtilin, bacilysin, sublancin, subtilosin, chlorotetain, 
fengycin, iturin, and bacillaene. Hydrogen cyanide (HCN) is a 
secondary metabolite that serves as a potent biocontrol agent 
against weeds. HCN produced by PGPR disrupts the electron 
transport chain and energy supply to cells, causing cell death. 
As a result, HCN-producing rhizobacteria are powerful agents 
for biological weed control (Kundan et al. 2015).

Plant growth-promoting rhizobacteria (PGPR) are 
vital biofertilizers that enhance plant growth through 
direct mechanisms, including nitrogen fixation, phosphate 
solubilization, and phytohormone production, as well as 
indirect mechanisms like pathogen inhibition and induced 
systemic resistance. Their multifunctionality not only 
enhances crop yields and nutrient absorption but also decreases 
dependence on chemical inputs, offering an environmentally 
friendly solution for sustainable agriculture. By producing 
antibiotics, hydrogen cyanide, and lytic enzymes (Ignatova et 
al. 2022), PGPR effectively shield plants from pathogens and 
weeds, leading to healthier crops and improved soil health.

CONCLUSION AND FUTURE PERSPECTIVES
Sustainable ginger cultivation demands a shift from 
conventional farming methods reliant on chemical inputs to 
more eco-friendly and resource-efficient practices. Microbial 

Table 1: The beneficial properties of microbes for plants

Microbes Plant beneficial property References

Pseudomonas aeruginosa Antagonistic activity against Pythium myriotylum Chakotiya et al. 2017

Flavobacterium spp. Antagonistic activity against Ralstonia Du Toit A. 2020

Stenotrophomonas, Sphingobacterium Antagonistic activity against plant pathogens Kwak et al. 2018 

Bacillus, Sphingomonas, Acidibacter Shoot and root stimulation Hannula et al. 2021

B. velezensis, Etridiazole Increases ginger production Chowdhury et al. 2013

P. macerans Antagonistic activity against pathogens Sharma et al. 2013

Spathiphyllum, Cryptococcus Antagonistic activity against  Cylindrocladium spathiphylli Liu et al. 2017

Pseudomonas sp. Plant growth stimulation Jasim et al. 2014

Nocardiopsis sp. Antagonistic activity against phytopathogen Sabu et al. 2017
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fertilizers, with their ability to enhance soil fertility, boost 
plant growth, and protect crops from pathogens, represent a 
transformative approach to agriculture. This review highlights 
the critical role of beneficial microbes, including Bacillus 
velezensis and other plant growth-promoting rhizobacteria 
(PGPR), in improving nutrient dynamics, suppressing diseases, 
and fostering resilience under diverse conditions. Additionally, 
integrating microbial fertilizers with advanced cultivation 
techniques, such as hydroponics and organic farming, 
provides a robust framework for increasing productivity 
while maintaining environmental health. By adopting these 
sustainable strategies, ginger farmers can achieve higher 
yields, better-quality rhizomes, and healthier ecosystems. 
Further research into microbial diversity and its functional 
roles in ginger cultivation will be essential to maximize the 
benefits of these innovative solutions.
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